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Electronic Design brought to you by Industrial Automation 

Rust and SPARK: Software Reliability for 

Everyone 

Programming languages often defer reliability and security issues to tools and processes. Two 

initiatives—SPARK and Rust—state that language is key to reaching these objectives.  

Quentin Ochem | Apr 17, 2017 

Looking at programming languages, it seems that for a long time, safety or reliability was 

considered an afterthought, usually covered later in tools such as testing and static analysis, 

rather than in the language itself. However, over the past few years, it seems there’s been a 

growing realization that much higher levels of reliability could be achieved for a fraction of 

the cost if the programming language were designed with reliability in mind. Two names 

come to mind here: Rust and SPARK. 

Rust is probably the most notable indication of the growing need for languages with safety in 

mind. Sponsored by Mozilla and used in the experimental Servo browser, the language was 

developed as a response to the inability to identify a suitable language for safe software 

development. Since then, several other projects have adopted this language, mostly in the IT 

domain. 

Coming from an A&D perspective, it is intriguing to see that the Ada language wasn’t 

considered as a suitable starting point. In particular, looking at the Rust mission statement as 

expressed today in its documentation: 

“Rust is a systems programming language focused on three goals: safety, speed, and 

concurrency. [...], making it a useful language for a number of use cases other languages 

aren’t good at: embedding in other languages, programs with specific space and time 

requirements, and writing low-level code, like device drivers and operating systems. It 

improves on current languages targeting this space by having a number of compile-time safety 

checks that produce no runtime overhead, while eliminating all data races. [...]” 

One can find some troubling similarities with the Ironman requirements from the DoD that 

led to Ada: 

“The language shall provide generality only to the extent necessary to satisfy the needs of 

embedded computer applications. Such applications require real time control, self-diagnostics, 

input-output to nonstandard peripheral devices, parallel processing, numeric computation, and 

file processing. [...] The language should aid the design and development of reliable 

programs. The language shall be designed to avoid error prone features and to maximize 

automatic detection of programming errors. [...] The language design should aid the 

production of efficient object programs. [...]” 

These two extracts, separated by more than 30 years, seem to be targeting the same set of 

needs. Emphasis is on safety and targeting embedded environments, with efficiency and real-

time responsiveness in mind. It’s not as if these are core criteria of all languages. Other 
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languages may put the emphasis on developer productivity, integration with scientific 

computations, or dynamic capabilities. 

And as it turns out, while Rust was being developed, another effort was undertaken by a 

different community, also trying to raise the bar in terms of safety. The SPARK language is 

an evolution of the Ada language that aims at providing a technology suitable for automatic 

analysis and verification. 

It’s extremely interesting to see that different communities recognized the need to improve the 

state-of-the-art technology related to software reliability. Rust and SPARK are definitely two 

initiatives in the forefront of this trend. Let’s look at what each has to say. 

As a disclaimer, this article is written with an Ada/C++/C#/Java background, and probably 

more familiarity with SPARK patterns than with Rust’s—though fascinated with what Rust 

brings to the table. 

What Brings Them Together 

To simplify the comparison, we’re going to disregard syntactic differences. SPARK is based 

on Ada, inspired by Pascal, while Rust is loosely closer to C. That’s that. They’re both 

imperative languages, compiled directly into object code, and both manage memory directly 

(i.e., no garbage collection). Each provides abstractions for the usual programming paradigms 

(procedural and object-oriented). In addition, they both offer advanced concurrency models, 

providing assurance of properties such as absence of race conditions. 

Both languages implement a number of static and dynamic checks directly in the language 

definition. For example, they implement strict-type safety; that is, objects can’t be implicitly 

converted from one type to the next. The following doesn’t compile in SPARK: 

 

But will with a conversion: 

 

Similarly, in Rust: 

 

will not work, but can be fixed with a conversion: 
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Arrays are treated as first-class citizens in both languages. In particular, equality between 

arrays is an equality between values, and arrays are provided with high-level initialization 

(aggregates) and syntax to refer to subsets of their elements (slices). 

Each language enforces strict safety-related rules, but allows the developer to relax them by 

using explicit “unsafe” operations. In both cases, this helps to make these operations visible 

(and thus prime suspects in case of problems) while still allowing the right level of flexibility. 

Rust and SPARK Memory Models 

SPARK and Rust treat dynamic memory in two ways: the “safe” way and the “unsafe” way. 

The objectives of both memory models, however, are different. While both consider safety, 

Rust focuses on memory integrity, providing a model that allows the use of dynamic memory 

without risk of memory corruption. SPARK focuses on analyzability and provability of 

program properties and doesn’t permit direct use of dynamic memory or even pointers. 

Instead, it provides support for the most common cases where pointers are usually needed, 

specifically for containers and objects of dynamic size, and leaves other uses to the unsafe 

portions of the code. Both languages forbid memory aliasing in their safe subsets, and neither 

provides garbage-collection capability. 

These models are unusual enough to deserve a couple of examples to illustrate them. Let’s 

start with Rust. To clarify up front the issue of containers (we’ll discuss them more for 

SPARK), Rust provides a native extensible vector type with checks: 

 

The above will lead to the value 41 in v[0]. Access to an element that’s not available (for 

example, v[1]), will lead to a clear error, a panic. There’s no risk of accessing an unallocated 

piece of memory. Note that the vector doesn’t need to be manually deallocated. Regardless of 

the underlying implementation (most probably will have some dynamic memory and pointers 

lying around), it will be freed when reaching the end of its scope. 

The Rust memory model shines when looking at how it handles arbitrary references and 

dynamic memory. The core idea is that a piece of data is always owned by a variable (a 

binding, in Rust lingo) and only one. This protects against two problems, the first of which is 

aliasing. A common problem arises when manipulation of a variable modifies another 

variable at the same time because they point to the same piece of data. A typical example of 

this kind of problem is double deallocation, although aliasing can also cause other subtle 

bugs. This situation can’t arise in Rust. 
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The other common problem relates to memory leaks or, more generally, the overall 

deallocation policy. Because a piece of data is always owned by a binding, when that binding 

goes out of scope, we know it’ll never be accessed by anything else (there are no other 

references or aliases). It can thus be safely freed. 

To fully appreciate the consequences of this, let’s look at a short example: 

 

v2 is a reference (or pointer) to v. Because of the assignment, v2 borrows the value of v and 

owns it for the rest of the scope. As a result, it’s no longer possible to directly modify v. This 

is checked statically, and the compiler will refuse to compile the above code. Borrowing can 

be done on a smaller scope as well. For example: 

 

When the above code works correctly, v2 releases the ownership of v at the end of the scope. 

This is particularly useful in parameter passing. 

With SPARK, large chunks of memory have to be managed through dedicated containers. 

You can use either real-time embedded containers—typically of fixed capacity—or 

unbounded containers. The key idea is that containers not only provide safe access to a pool 

of objects from a memory perspective, but they allow ways to reason about them and 

statically verify certain run-time properties. Let’s take one example, one with a fixed capacity 

container: 



 

5 
 

 

The example creates a vector with a maximum capacity of 10 elements; then adds two 

elements to it (10 and 20). Subsequently, we attempt to replace the element at index 3. By 

default, vectors are indexed starting at 1 in SPARK (although other indexing is possible). 

Therefore, after adding two elements, only items 1 and 2 are present. The normal behavior of 

this code would be to raise an exception at run-time, which it will. 

However, the SPARK formal prover is able to verify that the condition “the index of the 

element must exist before a replacement” cannot be verified, and will actually issue an error 

statically. In this example, the mistake is quite obvious to the careful reader. 

SPARK unleashes its full power when working on larger pieces of code, making sure that 

certain categories of errors don’t happen, such as buffer overflow or division by zero. In other 

words, as soon as there’s a possibility of failure, SPARK will detect it and allow you to fix it 

prior to testing, giving 100% confidence that any places it doesn’t complain about are free 

from these kind of errors. 

A Word on Functional Safety 

The previous section is interesting because it highlights a fundamental difference between 

Rust and Ada in terms of how they consider safety. Rust, like many other languages for the IT 

world, such as Java, C# and C++11, look at software safety through the prism of memory 

corruption. 

The goal of Rust’s memory model, which was the same goal of the Java/C# garbage 

collectors or C++11 lvalue references, is to provide a mechanism to reduce or avoid memory 

corruption. This makes a lot of sense, as these languages are used extensively on desktop 

applications and servers. In such applications, a lot of memory is being employed dynamically 

and memory corruption is the number one offender in terms of software vulnerability. 

On the other hand, SPARK originated from the Ada language and has the roots of its history 

in high-integrity embedded software. Although memory corruption also plays a role there, the 

objective of safety is to verify that a given implementation is correct with regard to a given 

specification. 

Looking at the above example, we can consider that “the index exists before calling 

Replace_Element” is part of the specification of Replace_Element and should be respected by 

any caller. SPARK allows one to specify custom requirements on user subprograms in the 

forms of preconditions and postconditions. For example, one could write: 



 

6 
 

 

This states that the procedure Fold_Lasts expects a vector of at least two elements and will 

update the vector so that the length of the new value is one less than the length of the old 

value. The implementation of the procedure will therefore verify that, given the precondition, 

the postcondition holds. For example: 

 

This subprogram accesses the last two elements of the vector (which is possible and correct, 

as we established there are at least two elements) and removes the last one (hence ensuring 

the length of the returned object is equal to the length of the old object minus one). 

This can then be used in an actual piece of code: 

 

In the above example, the second Fold_Last will issue a proof error, as it should: We’re 

adding two elements to the vector and folding one leaves only one, which is inconsistent and 

can be detected statically. 
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It’s useful to note at this stage that these functional properties, or contracts, have hybrid static 

and dynamic semantics. In other words, they can be used by the prover, but they may also 

generate assertions in the final executables to test their validity at run-time. This is 

particularly useful in cases of contracts too complex to be proven, or while developing 

contracts to allow for debugging of their behavior at run-time. These contracts can also be 

used in the non-SPARK parts of the application, which would typically be written in Ada or 

in C. 

Object Orientation 

Both Rust and SPARK provide support for object orientation. Beyond syntactic oddities 

inherited from Ada 95, the SPARK object-orientation model is relatively close to the usual 

paradigms implemented with C++ or Java. The interesting aspect of the SPARK OO model is 

that it supports Liskov substitutability analysis. That is, verifying that a class is substitutable 

by its subclasses in the case of dynamic dispatch. In other words, the child classes must be 

consistent with their parent. 

Let’s take a simple example—a class hierarchy that manipulates images. In this design, 

there’s a root class that can handle an RGB image. We decide to derive from this class to 

create a specialization that handles grayscale images. Here’s how it might look in SPARK: 

 

This may initially look like a decent OO design However, looking further at the Set method, 

the “Image” parameter requires a pixel to be an array of three float values, while 

“Image_Gray” requires a pixel to be an array of one element. On a typical dispatching call 

from “Image,” the user doesn’t know if Image or Image_Gray is going to be the actual type, 

and e doesn’t know if the length of a pixel is 1 or 3. 

The above is typical of awkward OO designs. SPARK will verify consistency of behaviors 

declared with methods (expressed in the form of contracts; i.e., preconditions and 

postconditions) and flag any error. In particular, in the case above, it will complain on the 

inconsistency of the Set method. One of the general rules is that all inputs accepted by the 
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parent class must also be accepted by the child (and possibly more). For instance, it would be 

okay for the Set method of “Image_Gray” to accept only a pixel that has one or more 

elements, which can be expressed as follows in its precondition: P’Length >= 1. 

As a side note, SPARK additionally provides static polymorphism, also known as templates 

or generics, in a model very close to that of C++. The same goes for Rust. 

Rust doesn’t provide any means to specify behavior or verify class consistency. However, it 

offers an OO model that’s much more modern through the notion of “traits.” In Rust, 

declaring a type Image like the above can’t be done directly in a type, but rather in a trait (a 

bit like an interface in Java and Ada if you will): 

 

There’s no notion of deriving a type in Rust, so to create an architecture comparable to the 

above, we would need to implement two different types. Of course, nothing prevents us from 

having some common type that holds services common to both Image and Image_Gray. But, 

nonetheless, there are essentially two distinct types implementing the same trait. Such code 

would look like: 

 

As you can see from the example, a structure isn’t inherently derived from a trait, as it would 

be in the case of a Java/Ada interface derivation. A given trait is implemented for a given type 

in a separate block. This gives a nice solution to the known problem of the tyranny of the 

dominant decomposition that forces a hierarchy of types to be decomposed on one axis only. 

This also allows third-party trait implementation. 
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I can use a library in Rust and decide to implement a trait for a type even if that hasn’t been 

initially planned by the implementer (in particular if the trait is mine!). This is also a nice 

answer to the problem that was at the origin of aspect-based programming—the separation of 

concerns—without drifting into overly permissive models such as AspectJ. 

What Sets Them Apart 

It would take too much time to go over each feature one by one and highlight every single 

axis that can be used to compare these two languages. We talked a lot about what brings them 

together and how they look at different angles of similar problems coming up with different 

solutions. There are, however, interesting elements that also make them very different. 

The most visible one relates to specification. Rust doesn’t provide a clear separation between 

a specification file and an implementation file. As with C or Java, this can be done through 

language features (you can decide to have traits in a “specification-only” file), but this is left 

to the discretion of the developer. SPARK enforces a clear distinction between these two 

notions and provides language-level verification of consistency between specification and 

implementation. 

Another aspect is the tradeoff between writability and readability. In Rust, when typing can be 

statically inferred, it becomes optional. So I can write: 

 

The compiler will know that x is an i32. This becomes particularly useful when the type is 

actually a complex generic instance, reducing the amount of text to be written. On the other 

hand, the downside is that it may be more difficult to figure out what the type actually is when 

reading the code (to the extent that, to date, the Rust documentation mentions types in 

comments next to variables so that newcomers understand what they refer to). 

SPARK takes the opposite stance. It limits to the absolute minimum what’s to be inferred by 

the compiler, forcing the developer to specify every type precisely at the cost of sometimes 

pedantic constraints. 

Both languages provide strong static typing features. However, in Rust, native types are just 

machine types, such as i32, f64, etc. In Ada, a type is a semantic entity associated with 

constraints that may or may not be defined, such as the range of values or memory size. 

Moreover, a type is associated with semantics that make it clear that even if it comes down to 

the same implementation, it should be considered as a different entity. For example: 
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The compiler will know that V1 assignment into V2 doesn’t make sense because they’re 

different types. Indeed, miles has nothing to do with percentage, even though they may both 

end up being implemented as 32-bit-machine floating point. Moreover, extra constraints—

here, a range of values—can be verified either statically (ensuring that a value can’t be 

outside of the range) or dynamically via testing. 

Rust provides an extremely powerful and structured macro language that allows one to 

effectively create expansions of pieces of code based on patterns. There’s nothing similar with 

SPARK. Rust also provides a so-called “matching” control structure much more powerful 

than the SPARK equivalent, closer to C/Java switch statements. 

Differences do exist in the error recovery model: SPARK has some limited support for 

exceptions (complete support if you go to the unsafe code mode), while Rust uses a much 

more constraining notion of “panic” when something is unexpected. Rust supports lambdas 

and closures, which don’t really have an equivalent in SPARK. 

And the list goes on. Determining which set of features is the best is a tradeoff that depends 

on many different things external to the language, but are instead specific to a given project, 

team, market, etc. But it’s useful to have some understanding of these differences in order to 

make an educated choice. 

A Word on Ecosystems 

Choosing to use one language rather than the other isn’t tied solely to its intrinsic technical 

merits. A language is the basis of a software ecosystem that includes the availability of 

additional tools, resources, and support. In this regard, Rust and SPARK are both very similar 

and very different. They’re similar in the sense that they each rely on an open-source 

community, though at different levels. 

The Rust compiler is LLVM-based, supported by the Mozilla foundation and a large 

community of hobbyists. The SPARK compiler is GCC-based, and while an open-source 

community does exist around it, it’s more restricted. The compiler element of the tool is 

mostly maintained by a software vendor called AdaCore (of which I happen to be part of) and 

the formal proof engines underneath are maintained and developed in collaboration with 

various universities. 

Both technologies are available for a large set of targets, in particular native and embedded 

environments (specifically, the obvious: ARM). They’re two open-source strategies, if you 

will, but shaped very differently. 



 

11 
 

It would be wrong, however, to consider this picture to be static. With Rust being deployed on 

a growing number of projects, there’s no reason why commercial entities would not start to 

provide official support on it. There’s also no reason why professional tools wouldn’t appear 

for static analysis, code coverage, requirement traceability, code quality, and so on. 

On the SPARK side, these tools exist from various vendors, inherited from the Ada history. 

However, AdaCore has a history of scarce interactions with the communities, limiting its 

contributions to the production of a few GPL binaries and commits of its compiler sources to 

the FSF trunk. That facade is also breaking down, with lots of development now done on 

GitHub and several other community-friendly initiatives being started. 

As to industrial usage, the first users of Rust are coming from the IT world (Mozilla needs are 

definitely IT-related), while SPARK users come from high-integrity embedded A&D 

applications. Both technologies target embedded application in the more general sense, 

thinking about things such as medical devices, industrial automation, automotive, and, of 

course, IoT. So, in a way, they’re two options to address the same needs, perhaps at different 

levels, perhaps in competition, but perhaps also in symbiosis. 

Last but not least, the question of available developers must be considered. There won’t be 

many people who include Rust in their résumé when getting out of university this year. There 

won’t be lots of people who include SPARK either. But that’s not really an issue, is it? The 

language shouldn’t be an obstacle for a decent embedded software engineer, and the internet 

is filled with tutorials and training resources for both languages. 

While this message is sometimes difficult to get through to management, the real question is 

more about finding these decent embedded software engineers than finding people who 

happen to claim knowledge in a particular technology. That, however, is an issue on its own, 

whether you develop embedded application in C, Rust, SPARK, C++, Java, or anything else. 

Conclusion 

There’s little doubt that Rust has a bright future ahead of it. It provides a unique approach to 

software reliability and safety, and is being adopted by a growing number of projects. The 

language seems to address reliability concerns in a much better way than C or C++, without 

the overhead of VM-based languages like C# or Java. It’s a young language, and some 

features or tools may still be missing, but there’s no reason why that shouldn't be overcome in 

the future. 

There’s little doubt SPARK has a bright future ahead of it, too. It provides a unique approach 

to software reliability and safety, and is being adopted by a growing number of projects. The 

language leverages its Ada foundation to target a large set of use cases in the embedded 

domain. SPARK is also a relatively young language (at least in its current form), and the 

language is rapidly evolving. At the time of this writing, for example, new prover capabilities 

are being developed and new containers are being written. 

It seems that the two languages can coexist. SPARK remains very well-suited for safety-

critical embedded applications, while Rust looks like a good fit for the IT domain. Generic 

embedded applications may lean on one side or the other, depending on various factors. Both 

languages bring interesting ideas to the table—and both suffer from shortcomings. Perhaps 

there’s room for cross-fertilization. 
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Above all, it’s very nice to see new languages considering safety and reliability at their core. 

The market can only be enriched by a larger offer of technologies, which will undoubtedly 

push better practices in industrial settings. As a matter of fact, I’m not sure if I care so much 

whether you’re using SPARK, Rust, or a super-constrained MISRA-C—as long as my car, 

my money, and my blood pressure are handled with safe and robust pieces of software! 

 


