
Practical Automation
of any Bug Avoidance Strategy

in the Engineering
of Safety Critical Software

Oliver Schneider

Hubert B. Keller

Veit Hagenmeyer

Karlsruhe Institute of Technology



Overview
●Software Engineering Best Practices

●Actual Practices

●Road Blocks

●Incremental Introduction



Best Practices
●Tooling

●Standards and Guidelines

●Documentation

●Requirements tracing



Actual Practices
●Instruction Lists

●Ad-hoc non-uniform Guidelines

●Only sporadic Documentation

●No static analyses

●Little automated testing



Road Blocks
●Social

– Resistance
– Training

●Technological
– Expensive
– Transition difficulties



Incremental Introduction
●Improve by doing small steps

●Project developers also write analyses

●Only add analyses with immediate gains



Analysis API
●Many compilers expose APIs

– clang (C++)
– gcc (C++)
– rustc (Rust)
– Ada (ASIS, libadalang)
– ...



Building a compiler from scratch

Your own code goes here



Building a compiler from scratch

Your own analyses go here



Building a compiler from scratch



How do analyses work?
Source
Code Machine

Code

Dataflow
Information Flow
Privacy
Security

Memory Safety
Modularity
Maintainability
Style



Simple example
●MISRA forbids `a && (b && c)`

●AND
– A
– PARENTHESES

● AND
– B
– C



Simple example
●MISRA forbids `a && (b && c)`

●AND
– A
– PARENTHESES

● AND
– B
– C



Simple Example

The above code is the only code unique for this analysis
All other code is the same for any analysis and thus abstracted away



Simple Example
●Writing simple analyses is time consuming but 
not hard

●Perfect candidate for automation



Simple Example - Autogenerated
if let ExprKind::If(ref cond, ref then, None) = expr.node;
if let ExprKind::Binary(ref op, ref left, ref right) = cond.node;
if BinOpKind::And == op.node;
if let ExprKind::Path(ref path) = left.node;
if match_qpath(path, &["a"]);
if let ExprKind::Parens(ref inner) = right.node;
if let ExprKind::Binary(ref op1, ref left1, ref right1) = inner.node;
if BinOpKind::And == op1.node;
if let ExprKind::Path(ref path1) = left1.node;
if match_qpath(path1, &["b"]);
if let ExprKind::Path(ref path2) = right1.node;
if match_qpath(path2, &["c"]);
if let ExprKind::Block(ref block1) = then.node;



Critique
●Developers have enough to do already

●Writing compiler extensions is hard

●Compiler APIs change and break analyses

●“Not good enough”



Critique – busy developers
Developers are frequently busy with

– Fixing nearly identical issues
– Teaching interns, new hires and trainees
– Looking up guideline/standard rules

Proposal: automate these tasks



Critique – compilers are hard
●Menial tasks are already automated

●Configuring style/guideline/standard checkers has 
a similar difficulty level

●Anecdotal evidence suggests otherwise
– Beginners at compilers and Rust write 

analyses within a day



Critique – (lack of) API stability
●Ask yourself

– How frequently do you update compilers?
– How often does a compiler update break your 

code?

●Rust and Go compilers automatically update your 
code



Critique - insufficient
●This approach does not provide any “proof” of 
correctness

●But
– Immediately applicable
– Incremental!
– Provide a sane platform for proofs

● Proofs usually require code to be in a 
specific format



Conclusion
●Applicable now
●Possible in many languages
●Forward compatible to proving correctness

●Incrementally move towards proofs

●For hobbyist beginners and professionals alike


	Practical Automation�of any Bug Avoidance Strategy�in the Engineering�of Safety Critical Software
	Overview
	Best Practices
	Actual Practices
	Road Blocks
	Incremental Introduction
	Analysis API
	Building a compiler from scratch
	Building a compiler from scratch
	Building a compiler from scratch
	How do analyses work?
	Simple example
	Simple example
	Simple Example
	Simple Example
	Simple Example - Autogenerated
	Critique
	Critique – busy developers
	Critique – compilers are hard
	Critique – (lack of) API stability
	Critique - insufficient
	Conclusion

